The World’s First Album Composed and Produced by an AI Has Been Unveiled

A music album called IAMAI, which released on August 21st, is the first that’s entirely composed by an artificial intelligence.

A New Kind of Composer

“Break Free” is the first sone released in a new album by Taryn Southern. The song, indeed, the entire album, features an artist known as Amper—but what looks like a typical collaboration between artists is actually much more than that.

Taryn is no stranger to the music and entertainment industry. She is a singer and digital storyteller who has amassed more than 500 million views on YouTube, and she has over 450 thousand subscribers. On the other hand, Amper is making his debut…except he’s (it’s?) not a person.

Amper is an artificially intelligent music composer, producer, and performer. The AI was developed by a team of professional musicians and technology experts, and it’s the the very first AI to compose and produced an entire music album. The album is called I AM AI, and the featured single is set to release on August 21, 2017.

Check out the song “Break Free” in the video below:

As film composer Drew Silverstein, one of Amper’s founders, explained to TechCrunchAmper isn’t meant to act totally on its own, but was designed specifically to work in collaboration with human musicians: “One of our core beliefs as a company is that the future of music is going to be created in the collaboration between humans and AI. We want that collaborative experience to propel the creative process forward.”

That said, the team notes that, contrary to the other songs that have been released by AI composers, the chord structures and instrumentation of “Break Free” are entirely the work of Amper’s AI.

Not Just Music Production

Ultimately, Amper breaks the model followed by today’s music-making AIs. Usually, the original work done by the AI is largely reinterpreted by humans. This means that humans are really doing most of the legwork. As the team notes in their press release, “the process of releasing AI music has involved humans making significant manual changes—including alteration to chords and melodies—to the AI notation.”

That’s not the case with Amper. As previously noted, the chord structures and instrumentation is purely Amper’s; it just works with manual inputs from the human artist when it comes to style and overall rhythm.

And most notably, Amper can make music through machine learning in just seconds. Here’s an example of a song made by Amper, and re-arranged by Taryn.

Yet, while IAMAI may be the first album that’s entirely composed and produced by an AI, it’s not the first time an AI has displayed creativity in music or in other arts.

For example, an AI called Aiva has been taught to compose classical music, like how DeepBach was designed to create music inspired by Baroque artist Johann Sebastian Bach. With this in mind, the album is likely just the first step into a new era…an era in which humans will share artistry (and perhaps even compete creatively) with AI.

Editor’s Note: This article has been updated to clarify what songs were made by Amper and rearranged by Taryn. 

Source: The World’s First Album Composed and Produced by an AI Has Been Unveiled

by Dom Galeon on August 21, 2017 

 Amper Music



DNA could store all of the world’s data in one room | Science | AAAS

DNA could store all of the world’s data in one room

Humanity has a data storage problem: More data were created in the past 2 years than in all of preceding history. And that torrent of information may soon outstrip the ability of hard drives to capture it. Now, researchers report that they’ve come up with a new way to encode digital data in DNA to create the highest-density large-scale data storage scheme ever invented. Capable of storing 215 petabytes (215 million gigabytes) in a single gram of DNA, the system could, in principle, store every bit of datum ever recorded by humans in a container about the size and weight of a couple of pickup trucks. But whether the technology takes off may depend on its cost.

DNA has many advantages for storing digital data. It’s ultracompact, and it can last hundreds of thousands of years if kept in a cool, dry place. And as long as human societies are reading and writing DNA, they will be able to decode it. “DNA won’t degrade over time like cassette tapes and CDs, and it won’t become obsolete,” says Yaniv Erlich, a computer scientist at Columbia University. And unlike other high-density approaches, such as manipulating individual atoms on a surface, new technologies can write and read large amounts of DNA at a time, allowing it to be scaled up.

Scientists have been storing digital data in DNA since 2012. That was when Harvard University geneticists George Church, Sri Kosuri, and colleagues encoded a 52,000-word book in thousands of snippets of DNA, using strands of DNA’s four-letter alphabet of A, G, T, and C to encode the 0s and 1s of the digitized file. Their particular encoding scheme was relatively inefficient, however, and could store only 1.28 petabytes per gram of DNA. Other approaches have done better. But none has been able to store more than half of what researchers think DNA can actually handle, about 1.8 bits of data per nucleotide of DNA. (The number isn’t 2 bits because of rare, but inevitable, DNA writing and reading errors.)

Erlich thought he could get closer to that limit. So he and Dina Zielinski, an associate scientist at the New York Genome Center, looked at the algorithms that were being used to encode and decode the data. They started with six files, including a full computer operating system, a computer virus, an 1895 French film called Arrival of a Train at La Ciotat, and a 1948 study by information theorist Claude Shannon. They first converted the files into binary strings of 1s and 0s, compressed them into one master file, and then split the data into short strings of binary code. They devised an algorithm called a DNA fountain, which randomly packaged the strings into so-called droplets, to which they added extra tags to help reassemble them in the proper order later. In all, the researchers generated a digital list of 72,000 DNA strands, each 200 bases long.

They sent these as text files to Twist Bioscience, a San Francisco, California–based startup, which then synthesized the DNA strands. Two weeks later, Erlich and Zielinski received in the mail a vial with a speck of DNA encoding their files. To decode them, the pair used modern DNA sequencing technology. The sequences were fed into a computer, which translated the genetic code back into binary and used the tags to reassemble the six original files. The approach worked so well that the new files contained no errors, they report today in Science. They were also able to make a virtually unlimited number of error-free copies of their files through polymerase chain reaction, a standard DNA copying technique. What’s more, Erlich says, they were able to encode 1.6 bits of data per nucleotide, 60% better than any group had done before and 85% the theoretical limit.

“I love the work,” says Kosuri, who is now a biochemist at the University of California, Los Angeles. “I think this is essentially the definitive study that shows you can [store data in DNA] at scale.”

However, Kosuri and Erlich note the new approach isn’t ready for large-scale use yet. It cost $7000 to synthesize the 2 megabytes of data in the files, and another $2000 to read it. The cost is likely to come down over time, but it still has a long ways to go, Erlich says. And compared with other forms of data storage, writing and reading to DNA is relatively slow. So the new approach isn’t likely to fly if data are needed instantly, but it would be better suited for archival applications. Then again, who knows? Perhaps those giant Facebook and Amazon data centers will one day be replaced by a couple of pickup trucks of DNA.

Posted in:


U.S. increasingly challenged by advances in R&D and S&T


United States increasingly challenged by advances in RESEARCH & DEVELOPMENT and SCIENCE & TECHNOLOGY

  • The United States invests the most in research and development (R&D), produces the most advanced degrees in science and engineering and high-impact scientific publications, and remains the largest provider of information, financial, and business services. However, Southeast, South, and East Asia continue to rapidly ascend in many aspects of S&E. The region now accounts for 40 percent of global R&D, with China as the stand-out as it continues to strengthen its global S&E capacity.

“Indicators is a rich source of information on a wide range of measures that let us know how the United States is performing in science and technology,” said NSF Director France Córdova. “It gives us crucial information on how we compare to other nations in the areas of research and development, STEM education, and the development of our workforce. The report also provides state-level comparisons, insights into the representation of women and minorities in science and engineering, and insight into what the public thinks about science.”

  • The 2016 edition of Indicators highlights that China, South Korea and India are investing heavily in R&D and in developing a well-educated workforce skilled in science and engineering. Indicators 2016 makes it clear that while the United States continues to lead in a variety of metrics, it exists in an increasingly multi-polar world for S&E that revolves around the creation and use of knowledge and technology.


  • China is now the second-largest performer of R&D, accounting for 20 percent of global R&D as compared to the United States, which accounts for 27 percent.


  • China is also playing an increasingly prominent role in knowledge and technology-intensive industries, including high-tech manufacturing and knowledge-intensive services. These industries account for 29 percent of global Gross Domestic Product (GDP) and for nearly 40 percent of U.S. GDP. China ranks second in high-tech manufacturing, where the U.S. maintains a slim lead with a global share of 29 percent to China’s 27 percent. It has now surpassed Japan to move into third place behind the United States and the European Union.


  • China is the world’s number-one producer of undergraduates with degrees in science and engineering. These fields account for 49 percent of all bachelor’s degrees awarded in China, compared to 33 percent of all bachelor’s degrees the U.S. awards.


  • In 2012, students in China earned about 23 percent of the world’s 6 million first university degrees in S&E. Students in the European Union earned about 12 percent and those in the U.S. accounted for about 9 percent of these degrees.


  •  However, the U.S. continues to award the largest number of S&E doctorates and remains the destination of choice for internationally mobile students.


“Decreased federal investment is negatively impacting our nation’s research universities,” said Kelvin Droegemeier, NSB vice chair and vice president for research at the University of Oklahoma. “Our universities conduct 51 percent of the nation’s basic research and train the next generation of STEM-capable workers. Federal support is essential to developing the new knowledge and human capital that allows the U.S. to innovate and be at the forefront of S&T.”

  • Americans have generally favorable views toward science, believing that science creates more opportunity for the next generation, that its benefits outweigh its risks, and that the federal government should provide funds for scientific research.


Additionally, despite declining public confidence in most U.S. institutions, Americans’ confidence in the scientific community remains strong. However, Americans take a dim view of our nation’s performance in K-12 science, technology, engineering, and mathematics (STEM) education; most believe other countries are doing a better job. About half of Americans worry that science is making life “change too fast,” up from about one-third who expressed this concern a decade ago.

  • Americans remain divided on global warming.
  • However, a majority of Americans say they would prefer a focus on alternative energy sources over fossil fuel development.
  • Eight out of ten say they would like to see more emphasis on fuel efficiency standards for vehicles and renewable energy development.


“Our country’s commitment to investing in R&D and in our higher education institutions has and continues to fuel our success,” said NSB chair Arvizu. “Other countries are emulating our model. We can view these advancements as opportunities for our global society to tackle complex problems, such as energy demands, food and water security, and disease. At the same time, we need to remain steadfast in our nation’s dedication to that which has served us so well: investing in people and their ideas.”

About Indicators

Science and Engineering Indicators is the most comprehensive source of high-quality federal data on a wide range of topics that include trends in global R&D investments and knowledge-intensive production, K-12 and postsecondary STEM education, workforce trends and composition, state level comparisons, and public attitudes and understanding of science and related issues. Other, related resources include the Indicators Digest, state data tool, STEM education interactive online resource, and NSB’s 2015 report, Revisiting the STEM Workforce.

To read the entire article, click here!